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Stimulated by recent investigations of the Coulombic criticality of symmetrical classical charged hard sphere
systems by M. E. Fisher and co-workers we undertake an analysis of a mass-symmetrical quantum system. The
role of the ‘‘smallest distance’’ between charges plays here the thermal de Broglie wavelengthL(T)
5h/@64pmkT#1/2. A critical point is found at the critical temperatureTc.7186 K and density
nc*.3.7331021 cm23. @S1063-651X~96!04809-X#
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I. INTRODUCTION

The discussion of Coulombic phase transitions in classical
systems of spheres with equal diametera and opposite
chargese5e152e2 has a long tradition with a rather con-
troversial discussion about the existence of this transition
and the location of the critical point@1–7#. Only precise
experiments by Pitzer@8# and the above-mentioned analysis
by Fisher and co-workers@1–4# led to some clarification of
the situation. It seems to be more or less clear now that
Coulombic phase transitions exist and that they are in a first
approximation described by a refined Debye-Hu¨ckel theory
in combination with an appropriate mass action law. Now
the question comes up again of whether a corresponding
phase transition in quantum plasmas exists or not and where
it is located in the phase spaceT, n. This question also has a
long and rather controversial history, which started with the
hypothesis developed by Norman and Starostin@9# and led to
several estimates of the critical point for gas plasmas@7,10–
13# and for solid state plasmas@10,14,15#. Here we take up
the question again considering not a real system but the most
simple theoretical model we can imagine: light equal masses
with opposite charged and equal densities@15#:

m5m15m2 ,

e5e152e2 , ~1!

n5n15n2 .

We may imagine a system consisting of electrons and posi-
trons~without pair annihilation!. Another possible realization
are electrons and holes in semiconductors, however, here the
masses may not be completely equal and a dielectric constant
D.1 should be taken into account. The symmetrical Cou-
lomb system possesses hydrogenlike bound states:

En52
me4

4D2\2n2
. ~2!

The two characteristic length scales are the Bohr orbit radius

aB5
2\2D

me2
~3!

and the thermal wavelength

L5~2p!1/2
\

~mkT!1/2
. ~4!

In factaB denotes the distance of closest approach for bound
charges andL is the corresponding distance for free charges.
Thus the quantum case is more difficult than the classical
one, where only one length, the diameter of the chargesa,
exists.

The big advantage of mass-symmetrical systems is that
for symmetry reasons all the odd-power contributions (e2k

with k odd! to the thermodynamic functions cancel. This fact
appears to be a large simplification of the theory and will be
exploited below in a similar way as in our previous work on
this problem@15#.

II. CLASSICAL AND QUANTUM STATISTICS
OF SYMMETRICAL COULOMB SYSTEMS

The basic quantity of the classical theory is the pair dis-
tribution function, which reads in the Debye-Hu¨ckel-Bjerrum
approximation

Fab~r !5Q~r2a!F12
eaeb

kTDr~11ka!
exp@k~a2r !#G

1 (
k52

`
1

k! S 2eaeb
kTDr D

k

. ~5!

Here the first order contribution to the Boltzmann factor was
screened according to Debye-Hu¨ckel theory and the other
terms were left unscreened according to their short-range
character. Carrying out the standard charging procedure we
get for the free energy density@6,10#

b f52n@ ln~nL3!21#2
k3

12p
F~ka!2n2a3K~b!1•••,

~6!

with

b5
e2

DkTa
,
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k25~8pne2/DkT!, ~7!

K~b!54pa3(
k52

`
b2k

~2k!! ~3k23!
, ~8!

and

F~x!5
3

x3
@ ln~11x!2x10.5x2#.12

3

4
x1

3

5
x22•••.

~9!

The last contribution to the free energy density in Eq.~6! is
exponentially diverging in the bound state regionb@1. It is
useful therefore to rescale according to a chemical picture
@12#, which introduces the density of free chargesn* and of
bound pairsn0* with the conservation relations

n5n*1n0* , ~10!

which are related by a Bjerrum-type mass action law

n0*

~n* !2
5K~T!exp@2kabG~ka!#, ~11!

where

G~x!5~11x!21.12x1x22•••. ~12!

In the chemical picture the free energy density is now

b f * ~b,n* ,n0* !52n* @ ln~n*L3!21#

1n0* $ ln@n0L0
3/K~T!#21%

2
~k!3

12p
F~ka!. ~13!

The thermodynamics based on Eqs.~10!–~13! possesses a
first order phase transition below the critical temperature
@1–6,13#

Tc5
1

bc
5

1

16
. ~14!

The quantum statistics may be developed in analogy to the
classical case. Let us first neglect symmetry effects. Then the
analogue of Eq.~5! will be the density matrix:

rab5rab
free2K abUeaebkTr

exp~2kr !UbaL
1K abU(

k52

`
1

k! S 2eaeb
kTr D kUbaL . ~15!

Here,rab
free is the free particle contribution to the density ma-

trix. The linear contribution was approximated by the matrix
element of the Debye potential~i.e., static screening!. The
higher contributions with respect to the interaction parameter
e2 were not screened at all. The free energy is again in anal-
ogy to the classical treatment, found by a charging procedure
leading to quantum versions of the involved functionsF,
K, andG. The methods to carry out the traces were ex-

plained in detail in earlier work@10#. It seems remarkable
that the result of the explicit calculations may be represented
in exactly the same shape as the classical result~6!, namely,

b f5b f id2
k3

12p
Fq~B!2n2aq

3Kq~B!,

with

B5
4A2e2

DkTL
5

4e2m1/2

Aph~kT!1/2
, ~16!

Fq~x!51F1S 1,52 , 4p x2D1
3p

8x
1
3p2

32x3 F12expS 4x2p D G ,
~17!

Kq~T!5L3(
k52

`
pkz~2k22!

k! SB8 D 2k, ~18!

where 1F1 is a confluent hypergeometric function. The dif-
ference between the classical and the quantum case is there-
fore in the concrete meaning of the parameters and functions:
Instead of the classical Bjerrum parameterb we now get the
Born parameter by the replacement

b→B.

Furthermore, the classical length is replaced by the quantum
length

aq5
L

4A2
5

h

A64pmkT
.

The classical Bjerrum mass action constant is transformed to
a quantum version by

K~T!→Kq .

By introducing the definition of Riemann’sz function z(x)
we get an expression of remarkable simplicity:

Kq~T!5L3(
s51

`

s2@exp~2bEs!211bEs#, ~188!

whereEs are the energy levels defined by Eq.~2!. The ex-
pression~188) was discussed already by Planck and Bril-
louin as a convergent version of the hydrogenic partition
function and later derived more rigorously by Larkin and
others @10#. At this point we wish to stress again that the
above considerations lead to the remarkable result that the
quantum partition function~188! is in full analogy to the
Bjerrum mass action constant.

Finally the mass action function is derived from the free
energy as

n0*

~n* !2
5Kq~T!exp@2kaqBGq~kaq!#,

whereGq is defined as
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Gq~x!5
p

4x H 12expS 4x2p D F12 erfS 2xAp
D G J , ~189!

with erf(x) denoting the error function.
The quantum versions of the Debye-Hu¨ckel functions

have a similar shape to the classical ones since their first two
terms in the Taylor expansion are identical:

Gq512x1
20

3p
x22•••,

Fq512
3

4
x1

4

p
x22•••. ~19!

The differences appear only in the second order and in the
higher order terms. The condition of thermodynamic stability
leads to the inequality

xB@G~x!1xG8~x!#<4. ~20!

In the region where the inequality~20! is violated, a first
order phase transition of Coulombic type may appear.

Forgetting for a moment the differences between the clas-
sical and the quantum expressions for theG functions, i.e.,
assuming

Gq5@11x#21 ~21!

we can repeat the classical analysis@1,6# and find by solving
a quadratic equation

xc51,

Bc516,

~22!

Tc5
uE1u

4pD2kB
,

nc5
1

16p4aB
23 .

More explicitly this gives

Tc56282/D2 K,

~23!

nc55.2431020/D2 cm23.

Without the approximation~21! the stability condition~20!
can be analyzed only numerically. We get for the critical
parameters the condition

Bc5
4

xc@G~xc!1xcG8~xc!#
.

An approximate solution is

xc50.728, Bc518.4.

We will show in the next section that symmetry effects due
to the Fermi character of the charges modify this result.

III. SYMMETRY EFFECTS

A. Structure of thermodynamical functions

In the semiclassical discussion of the previous paragraphs
the quantum character of the charges’ statistics has so far
been neglected. Taking into account the Fermionic antisym-
metry into the binary density matrix Eq.~15! leads to rather
complicated formulas. By careful analysis of the individual
terms, however, it is possible to refer the whole problem
more or less to the electron fluid@or one component plasma
~OCP!#. Let us—in the spirit of the chemical picture—start
with the extensiveness of the free energy density with respect
to the different particle species:

b f5
F~n0 ,n1 ,n2!

kBTV
5b f 01b f11b f2 . ~24!

Here, the index refers to the charge of the particle. The
model system—the vacuum electron-positron plasma, with
D51—consists, as described above, of neutral bosonic
bound states and its positive and negative Fermionic con-
stituents of equal massme and charges6e. For the first term
on the right-hand side~rhs! of Eq. ~24!, then, the classical
expression from above can be directly used:

b f 05n0@ ln~n0L0
3!212 lnsPBL~T!#. ~25!

The de Broglie wavelength is given by

L05
h

A2pm0kBT
, ~26!

where

m05
m1m2

m11m2
5
1

2
me ~27!

is the effective mass.
The Planck-Brillouin-Larkin~PBL! sum of states has al-

ready been introduced. For bound states of equal masses
~which can be scaled onto the hydrogen problem with
me/2) it can be written as

sPBL~t!5(
s
s2FexpS 1

2s2t D212
1

2s2t G , ~28!

where the dimensionless temperature

t5
kBT

uE1u
~29!

in terms of the hydrogen ground state has been introduced.
Note that inb f 0 no interaction has been included. This

assumption not only disregards polarizabilities and phase
space occupation, but it also assumes a constancy of the
bound state itself throughout the density-temperature plane,
which cannot be expected in nature. The correlation length
of the bound state, the Bohr radiusaB , should be thought of
as a variable. A theoretical approach on such a basis has been
carried out in@16#. In the presented model, however, the
emphasis is put on discussing the principal fermionic effects
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in a quantum plasma and not on realistic modeling of the
interactions. Thus the given form ofb f 0 shall be sufficient.

The basis for the discussion ofb f6 shall be the expansion

f65 f id1 f e21 f e4, ~30!

representing the first two terms of an expansion with respect
to the Coulomb interaction.

The ideal parts of the free energy of distinguishable par-
ticles obviously superpose and are given for Fermions as

f6
id5n* t@ I 1/2

21~y!2I 3/2„m5I 1/2
21~y!…/y#, ~31!

where the degeneracy parameter

y5 1
2n*Le

353Apr s
23t23/2 ~32!

is given in the dimensionless temperaturet and density pa-
rameter

r s5S 4p

3
n* D 21/3Y aB . ~33!

Note that the free energy density in Eq.~31! is measured in
uE1u as will be the energy scale from now on. The density
n* shall be shorthand forn*5n15n2 .

The functionsI in Eq. ~31! are the Fermi functions and
their inverses of the indicated order:

I k/2~j!5
1

G~k/211!
E
0

` zk/2dz

ez2j11
. ~34!

There is a long history of fit formulas for the Fermi func-
tions. We use a formula given by Zimmermann@17#:

I 1/2
21~y!

5H lny10.3536y20.000495y210.000125y3 if y,5.5

1.209y2/320.6803y22/320.85y22 if y>5.5,
~35!

I 3/2„m5I 1/2
21~y!…

5H y10.1768y220.0033y310.000094y4 if y,5.5

0.4836y5/311.3606y1/321.7y21 if y>5.5.

~36!

The e2 term in Eq.~30! in systems of overall neutrality re-
duces to the so-called Hartree-Fock term, which describes
first order interaction with exchange~see, e.g.,@10# and ref-
erences to earlier work therein!. Since exchange can only
occur between indistinguishable particles, the Hartree-Fock
term decouples for both charged subsystems:

f e252 f6
HF.

For the first two cumulants of the expansion on the rhs of Eq.
~30! thus the OCP contributions of the subsystems simply
superpose and the following trivial scaling law is estab-
lished:

„f1~n* ,t!1 f2~n* ,t!…u id, HF52„f6
id~n* ,t!1 f6

HF~n* ,t!….
~37!

If in the e4 term in Eq. ~30! the exchange contribution is
explicitly excluded, one arrives at the so-called Montroll-
Ward ~MW! term. For this term in@18# a scaling has been
given, referring general symmetrical plasmas to the OCP.
The mathematical origin of this scaling is invariance proper-
ties of the occurring integrals with respect to the number of
species, the charges, the mass ratio, and the dielectric con-
stant in a general multispecies plasma. For our simple model
system this scaling reads

f1
MW~n* ,t!1 f2

MW~n* ,t!52 fOCP
MW S n* ,t2D . ~38!

The form in which the known expansions of the interaction
contributions to the free energy shall be incorporated are
Padéapproximants, which converge correctly to the limiting
cases. For the OCP the following structure has been pro-
posed by Ebeling@19# and optimized by Ebeling and Leh-
mann@15#:

hxc
OCP5

Uhxc
~0!2d0r s

23/2t21/22d2r s
23t21

11U1R
~39!

with the switch functions

U5
6

p
c1r s

23t23136pc2r s
26t23,

~40!
R5c3ln@11d1r s

23/2t21/c3# ,

and the low-temperature limit

hxc
~0!52

aH
r s

22b0lnF11
exp~b1/2b0!r s

21/2

112b0r s
1/2/~aM2aH!G . ~41!

The Madelung constantaM has been fitted by Baus, Hansen,
Galam, and DeWitt@20–22# in terms of the interaction pa-
rameterG52/(r st):

aM5aH1@a12a2G
23/41a3G

21lnG1a4G
21#

2

11~1/3G!3
.

~42!

In ~39!, h can be any of the specific thermodynamical po-
tentialsF/N, G/N5m, E/N ~free energy, Gibbs potential,
and internal energy per particle!. The physical constants
ai , bi , anddi as well as the optimized numerical constants
ci are given in Table I forh5m, the chemical potential,
since the mass action law below will be expressed in terms
of m.

The formula ~39! mixes the different types of terms
wherefore the scaling laws~37! and~38! have to be put in by
hand in order to achieve the desirable superposition form

hxc,11hxc,252hxc
OCP, scal. ~43!

Deviation from the simple superposition concerns only the
constantsd0

scal5A2d0 and d1
scal523/2d1, referring to the

Debye-Hückel static screening term and the so-called ring
sum, respectively, which are the low density, high tempera-
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ture limit of the Montroll-Ward term. In the zero temperature
limit the temperature scaling as in~38!, obviously, becomes
meaningless.

In summary we may state that the exchange and correla-
tion contributions to the thermodynamical functions of a
symmetrical quantum plasma are largely given~i.e., in low
orders of perturbation theory! by the well-studied OCP ex-
pressions. Where the simple superposition symmetry is bro-
ken at least the formal dependencies on densities and tem-
perature remain intact. Thus, by altering the respective
constants, the available fit formulas for the OCP may be
employed. We note that in the nondegenerate low density
regions the formulas given here are consistent with those
given in Sec. II.

B. Mass action law, stability, and critical point

The mass action law~MAL ! is, in the chemical picture, a
consequence of the equilibrium requestdF(n0 ,n* )50.
With m*5m id(n* ,t)1mxc

OCP, scal(n* ,t) from Eq. ~43! it
reads for our symmetrical plasma simply

m052m* . ~44!

The chemical potential of the bound states is obtained imme-
diately from Eq.~25! as

m05t lnS n0L0
3

sPBL
D . ~45!

If a dimensionless density parameterr s
(0) is defined in anal-

ogy to ~33! for the bound state density, the MAL can be
solved analytically:

r s
~0!~r s ,t!5A3 12A2pt21/2sPBL

21/3expF2
2

3t
m* ~r s ,t!G .

~46!

It has to be reiterated at this point that this analytical solution
is entirely due to the fact that there is no nonideality contri-
bution tom0. Figure 1 shows the solution of Eq.~46! in the
critical region, which will be discussed further below.

If in ~46! the nonideality part vanishes andm id reduces the
classical logarithmic expression, the above equation turns
into the well-known Saha equation.

By means of Eq.~46! it is also possible to give an expres-
sion for the degree of ionization,a, which is the ratio of
unbound electron density to overall electron density:

a5
n*

n*1n0
. ~47!

It is then straightforward to obtain

a21511
1

12A2p
r s
3t3/2sPBLexpS 2m*

t D . ~48!

It may be of interest to observe that Eq.~48! can also be
written in terms of the degeneracy parameter:

a21511
1

4A2
y21~r s ,t!sPBLexpS 2m*

t D . ~49!

Figure 2 shows the degree of ionization in vicinity of the
critical point.

The stability condition

TABLE I. Numerical constants for the Pade´ approximant for the
chemical potentialmxc .

aH 2.389
a1 1.167
a2 3.7347
a3 0.55513
a4 3.1806
b0 0.06218
b1 0.1140
d0 3.46341
d1 4.34164
d2 3
c1 2.0
c2 1.5
c3 6.8 FIG. 1. Critical region; bound states densityr s

(0) .

FIG. 2. Critical region; inverse degree of ionization.
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]p

]V
<0 ~50!

can be, using the MAL~44!, rewritten as@10#

]m*

]r s
<0, ~51!

where the equality refers to the critical point~CP!, the
uniqueness of which is secured by the demand that in any
vicinity of it a stable state may be found. In topological
terms, the critical point is a saddle point of them* surface
over the density-temperature plane. Figure 3 shows the
chemical potentialm* in the vicinity of the critical point,
which is found to be located at

r s
crit57.562, tcrit50.045486. ~52!

Due to the flatness of them* surface, it had been necessary
to iterate up to five digits intcrit in order to have stable four
digits in r s

crit Going back to dimensional entities, one has

nc*.3.7331021 cm23, Tc.7186 K, ~53!

which is in close correspondence to the critical data esti-
mated in Sec. II.

Bearing in mind that the degree of ionization has above
been given in the forma5a„n* ,n0(n* )…, the condition of
criticality can also be expressed in terms ofa:

aCP~12aCP!5n*
]a

]n* U
CP

, ~54!

where again the solutions in any nonstable domain have to
be disregarded. Condition~56!, however, is in Fig. 2 much
harder to detect than the saddle point of the chemical poten-
tial in Fig. 3. The critical degree of ionization is found as
aCP.0.445.

Finally, the degeneracy and interaction parameters at the
critical point are evaluated as

yc~r s
crit ,tcrit!.1.27,

~55!
Gc~r s

crit ,tcrit!.5.81.

This establishes that the CP is located in a region where the
Boltzmann statistics already have to be substantially degen-
eracy corrected and the Pade´ approximant~39! has already
switched to the strongly coupled, low temperature regime.

It can be concluded that the criticality of a vacuum
electron-positron plasma is due to an intricate interplay of
Coulomb interaction and Fermi statistics. The value of the
critical degree of ionizationa posteriori justifies our theory
buildup, which—in terms of interaction—takes into account
only the free charges. For other symmetrical plasmas, such
electron-hole plasmas in semiconductors, where a dielectric
constante weakens the Coulomb interaction, separate studies
have to be carried out.

IV. DISCUSSION

We exploited in this work the formal analogy between the
classical Debye-Hu¨ckel-Bjerrum theory for symmetrical
charged spheres and the corresponding quantum problem of
point charges with equal masses. The quantum functions cor-
responding to the Debye-Hu¨ckel-Bjerrum expressions are
found. As we have shown, the main difference is the replace-
ment of the hard-sphere diameter by a temperature-
dependent distance proportional to the de Broglie wave-
length:

a→aq~T!5L/~4A2!. ~56!

In all other respects the classical and the quantum functions
have rather similar structure and properties. In order to take
into account symmetry effects we exploited the scaling prop-
erties of the Hartree-Fock and Motroll-Ward approximations.
On this basis the thermodynamical functions of symmetrical
plasmas may be reduced to those of electron plasmas for
which reliable Pade´ approximants are available. We have
further shown that the critical point is located in the moder-
ately degenerate region, the effect of the Fermion character
on the phase transition is studied.
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