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Coulombic phase transitions in symmetrical quantum systems
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Stimulated by recent investigations of the Coulombic criticality of symmetrical classical charged hard sphere
systems by M. E. Fisher and co-workers we undertake an analysis of a mass-symmetrical quantum system. The
role of the “smallest distance” between charges plays here the thermal de Broglie wavele(igih
=h/[647mkT]¥2 A critical point is found at the critical temperatur&,=7186 K and density
n¥=3.73x 10%! cm™3. [S1063-651X96)04809-X

PACS numbg(s): 05.30.Fk, 05.70.Ce, 64.60.Fr

I. INTRODUCTION and the thermal wavelength
The discussion of Coulombic phase transitions in classical A=(2m)Y2 h (4)
systems of spheres with equal diameterand opposite m (mkT)7?

chargese=e, = —e_ has a long tradition with a rather con-

troversial discussion about the existence of this transitiodn factag denotes the distance of closest approach for bound
and the location of the critical poirftl—7]. Only precise charges and is the corresponding distance for free charges.
experiments by Pitzdi8] and the above-mentioned analysis Thus the quantum case is more difficult than the classical
by Fisher and co-workersl—4] led to some clarification of one, where only one length, the diameter of the chaeges
the situation. It seems to be more or less clear now thagxists.

Coulombic phase transitions exist and that they are in a first The big advantage of mass-symmetrical systems is that
approximation described by a refined Debyéekiel theory  for symmetry reasons all the odd-power contributioa$ (

in combination with an appropriate mass action law. Nowwith k odd) to the thermodynamic functions cancel. This fact
the question comes up again of whether a correspondingppears to be a large simplification of the theory and will be
phase transition in quantum plasmas exists or not and wheexploited below in a similar way as in our previous work on
it is located in the phase spaen. This question also has a this problem[15].

long and rather controversial history, which started with the

hypothesis developed by Norman and Stard€ijrand led to Il. CLASSICAL AND QUANTUM STATISTICS

several estimates of the critical point for gas plasfifas0— OF SYMMETRICAL COULOMB SYSTEMS
13] and for solid state plasm440,14,19. Here we take up

the question again considering not a real system but the most The basic quantity of the classical theory is the pair dis-
simple theoretical model we can imagine: light equal masse#ibution function, which reads in the Debye-¢kel-Bjerrum

with opposite charged and equal densifi2S]: approximation
m=m,=m_, €46
+ Fan(r)=0(r—a) 1_mequ(a—r)]
e=e,=—e_, (1) ) )
+3, o e ©
n=n,=n_. k= k! \ KTDr/ °

We may imagine a system consisting of electrons and posiere the first order contribution to the Boltzmann factor was
trons(without pair annihilation Another possible realization screened according to Debyée-¢kel theory and the other
are electrons and holes in semiconductors, however, here therms were left unscreened according to their short-range
masses may not be completely equal and a dielectric constagharacter. Carrying out the standard charging procedure we
D>1 should be taken into account. The symmetrical Couget for the free energy densifg,10]

lomb system possesses hydrogenlike bound states:
3

K
met Bf=2n[ln(nA3)—1]—E@(Ka)—nzaa’K(b)nL-~-,

En= " 40727 @ ®
The two characteristic length scales are the Bohr orbit radiusvith

_2A%D . b e
B me @ ~ DkTa’
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=(8mwne?/DKT), (7) plained in detail in earlier work10]. It seems remarkable
that the result of the explicit calculations may be represented
b2k in exactly the same shape as the classical r¢6ylhamely,

K(b)=4wa3k§=)2 ZT(3k=3)" t3) 5

K
. Bt =Blia— 75~ Pq(B)—n’agKy(B),
an
3 3 3 with
D(x)= ;g[ln(1+X)—X+0.5X2]21— Vs gxz— e
) 42  4e’m'?

" DKTA Jah(kT)¥2'
1z, +—+

L F<4x2)
[12], which introduces the density of free chargg&sand of 2 8x 328 ™
bound pairsng with the conservation relations (17)

(16)

The last contribution to the free energy density in E).is
exponentially diverging in the bound state reglma 1. It is
X

useful therefore to rescale according to a chemical picture ¢ (x)=,

542) 37 372

©

n=n*+nj, (10 ™ §(2k 2)
° Ke(M=A2 —— g/ - (18)
which are related by a Bjerrum-type mass action law
n* where ;F, is a confluent hypergeometric function. The dif-
> =K(T)exd — kabG(«a)], (11  ference between the classical and the quantum case is there-
(n*) fore in the concrete meaning of the parameters and functions:
h Instead of the classical Bjerrum paramdterve now get the

where Born parameter by the replacement

G(X)=(14x) 1=1—x+x>—---. (12)

b—B.

In the chemical picture the free energy density is now _ i
Furthermore, the classical length is replaced by the quantum

Bf* (B,n*,n§)=2n*[In(n* A%)—1] length
+ng{In[noAg/K(T)]-1} A b
(K)3<D(Ka) (13) aq_4\/§_ V64mmkT

The classical Bjerrum mass action constant is transformed to
The thermodynamics based on E§$0)—(13) possesses a a guantum version by
first order phase transition below the critical temperature

[1-6,13 K(T)—)Kq.
1 1 By introducing the definition of Riemann's function £(x)
TC:b_C: I (14 we get an expression of remarkable simplicity:
The quantum statistics may be developed in analogy to the 3 ) )
classical case. Let us first neglect symmetry effects. Then the Kq(T)=A s§=:1 s(exp(—BEs) —1+BEs], (18)
analogue of Eq(5) will be the density matrix:
whereEg are the energy levels defined by Eg). The ex-
_ free_ pression(18’) was discussed already by Planck and Bril-
Pab™Pab <ab kTr exp( «r) ba> louin as a convergent version of the hydrogenic partition

o ‘ function and later derived more rigorously by Larkin and
1 —esep others[10]. At this point we wish to stress again that the

+<ab 22 H( KTr ) ba>. (9 apove considerations lead to the remarkable result that the

quantum partition function18') is in full analogy to the

Here,p/®®is the free particle contribution to the density ma- Bjerrum mass action constant.

trix. The linear contribution was approximated by the matrix ~ Finally the mass action function is derived from the free

element of the Debye potentiéile., static screeningThe  €nergy as

higher contributions with respect to the interaction parameter

*

e? were not screened at all. The free energy is again in anal- No —K(T)ex — ka B Gqy(kag)]
ogy to the classical treatment, found by a charging procedure (n*)2 " KqB gl Ka) ],

leading to quantum versions of the involved functiohs
K, and G. The methods to carry out the traces were ex-whereG is defined as
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T 4x? 2X
Gq(X):& 1—ex 7 1— erf \/—_
o

In the semiclassical discussion of the previous paragraphs

with erf(x) denoting the error function. . the quantum character of the charges’ statistics has so far
The quantum versions of the Debyedhel functions peen neglected. Taking into account the Fermionic antisym-
have a similar shape to the classical ones since their first tWgyetry into the binary density matrix E¢L5) leads to rather

lll. SYMMETRY EFFECTS

] , (18) A. Structure of thermodynamical functions

terms in the Taylor expansion are identical: complicated formulas. By careful analysis of the individual
20 terms, however, it is possible to refer the whole problem
Go=1—X+ —x2—... more or less to the electron flujdr one component plasma
d 3 ' (OCP)]. Let us—in the spirit of the chemical picture—start
with the extensiveness of the free energy density with respect
By=1- ‘3—1x+ %xz— . (19 o the different particle species:
F(ng,ny,n_)
The differences appear only in the second order and in the pi= kgTV =Bfot+ Bl + B . (24)
higher order terms. The condition of thermodynamic stability
leads to the inequality Here, the index refers to the charge of the particle. The
model system—the vacuum electron-positron plasma, with
XB[G(X)+xG'(x)]<4. (200 D=1—consists, as described above, of neutral bosonic

In th : h the | lit20) is violated. a first bound states and its positive and negative Fermionic con-
n the region where the inequalii20) is violated, a firs stituents of equal mass, and chargest e. For the first term

order phase transition of Coulombic type may appear. - : :
Forgetting for a moment the differences between the claso” the right-hand sidérhs) of Eq. (24), then, the classical

sical and the quantum expressions for Gdunctions, i.e., expression from above can be directly used:
assuming Bfo=ng[IN(NgA3) — 1—Inapg(T)]. (25

— -1
Gq=[1+x] (1) The de Broglie wavelength is given by

we can repeat the classical anal\{dis6] and find by solving

a quadratic equation Ag= h (26)
V2mmokgT '
X.=1,
where
B.=16,
(22) ~omm_ 1
iy mo_m++m__2me (27)
1
Te 47D%kg’ is the effective mass.
The Planck-Brillouin-Larkin(PBL) sum of states has al-
1 4 ready been introduced. For bound states of equal masses
Ne=716,4%8 (which can be scaled onto the hydrogen problem with

m/2) it can be written as
More explicitly this gives

2 => ! 1 ! 28
T.=6282D% K, opp(T)= 2 S\ exq 57|~ 17 5 (28
(23
no=5.24x 10YD? cm2. where the dimensionless temperature
Without the approximatiori21) the stability condition(20) 7= kB—T (29
can be analyzed only numerically. We get for the critical |E4l

arameters the condition . :
P in terms of the hydrogen ground state has been introduced.

4 Note that inBf, no interaction has been included. This
= ; . assumption not only disregards polarizabilities and phase
XL GOXe) + %G (Xc)] space occupation, but it also assumes a constancy of the

Bc

An approximate solution is bound state itself throughout the density-temperature plane,
which cannot be expected in nature. The correlation length
x.=0.728, B.=18.4. of the bound state, the Bohr radiag, should be thought of

as a variable. A theoretical approach on such a basis has been
We will show in the next section that symmetry effects duecarried out in[16]. In the presented model, however, the
to the Fermi character of the charges modify this result. emphasis is put on discussing the principal fermionic effects
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in a quantum plasma and not on realistic modeling of thef in the e* term in Eq.(30) the exchange contribution is
interactions. Thus the given form @ff, shall be sufficient. explicitly excluded, one arrives at the so-called Montroll-
The basis for the discussion gf .. shall be the expansion Ward (MW) term. For this term iff18] a scaling has been
given, referring general symmetrical plasmas to the OCP.
fo=figtfetfe, (30) The mathematical origin of this scaling is invariance proper-
representing the first two terms of an expansion with respeczeS c_>f the occurring integrals with respect to the_ numper of
pecies, the charges, the mass ratio, and the dielectric con-

to the Coulomb interaction. ; : . .
The ideal parts of the free energy of distinguishable par_stant in a general multispecies plasma. For our simple model

. - : : system this scaling reads
ticles obviously superpose and are given for Fermions as

9 =n* o 153(y) — Lyl =113(y)IY], (31 fTW(n*,T)+fMW(n*’T):2fg¥VP( n*,%). (39)
where the degeneracy parameter
) 5 L3 an The form in which the known expansions of the interaction
yzfn*Ae:?’\/;rs T (32 contributions to the free energy shall be incorporated are
Padeapproximants, which converge correctly to the limiting

is given in the dimensionless temperaturand density pa-  ¢cases. For the OCP the following structure has been pro-

rameter posed by Ebeling19] and optimized by Ebeling and Leh-
(477 13 mann[15]:

re= —n*) /aB. (33

S 3 ocp U775«0:)_dorsf3/27_*1/2_d2rs*37_*1 (39)
Note that the free energy density in E&1) is measured in x 1+U+R
|E;| as will be the energy scale from now on. The density ) )
n* shall be shorthand fam* =n_=n_. with the switch functions

The functionsl in Eq. (31) are the Fermi functions and
their inverses of the indicated order: U= %clr;3r*3+36wczrger’3,
1 » %z (
_ 40)
hua(€) T(k/2+ 1)J’0 ee i1 (34) R=c3In[1+drg ¥27 Yc,],

There is a long history of fit formulas for the Fermi func- and the low-temperature limit
tions. We use a formula given by ZimmermaliY]:
_ a exp(b,/2bg)r ;12
17k O 2 _2hgin| 1+ | (@1
12(Y) e re 0 1+2bor§’2/(aM—aH) 4

Iny+0.3536/— 0.00049%2%+ 0.00012%° if y<5.5
1.209/%%—0.6803 "2%-0.85/72 if y=5.5,

The Madelung constart,, has been fitted by Baus, Hansen,
Galam, and DeWitf20-23 in terms of the interaction pa-

(39 rameterl’=2/(r7):
|3/2(M:|1_/21(Y)) 2
— _ —3/4 -1 -1
y+0.17682—0.0033°+0.000094* if y<55  am=ant[ar=al asl Al +a,l" Tl mrares.
~ | 0.4836/5%+ 1.3606/ 3~ 1.7y ! if y=5.5. (42)

(36 In (39), » can be any of the specific thermodynamical po-
tentials F/N, G/IN=u, E/N (free energy, Gibbs potential,

2 . . .
The e” term in Eq.(30) in systems of overall ne_utrallty - and internal energy per partigleThe physical constants
duces to the so-called Hartree-Fock term, which descrlbeai, b, andd, as well as the optimized numerical constants

first order interaction with exchandeee, e.g.[10] and ref- c; are given in Table | fory=pu, the chemical potential,

erences to earlier work therginSince exchange can only gjnce the mass action law below will be expressed in terms
occur between indistinguishable particles, the Hartree-Foc f .

term decouples for both charged subsystems: The formula (39) mixes the different types of terms

wherefore the scaling law87) and(38) have to be put in by
hand in order to achieve the desirable superposition form

For the first two cumulants of the expansion on the rhs of Eq. oCP, scal
(30) thus the OCP contributions of the subsystems simply Mxert Mxe~=20xc " (43

superpose and the following trivial scaling law is estab- o ) -
lished: Deviation from the simple superposition concerns only the

. constantsd$®®= \/2d, and d§®®=2%%,, referring to the
(fo(n*, 1)+ f_(n*,7)|ig ve= 2(f'g(n*,7-)+f'f(n*,7-)). Debye-Huckel static screening term and the so-called ring
(37 sum, respectively, which are the low density, high tempera-

feo=2f"F,



54 COULOMBIC PHASE TRANSITIONS IN SYMMETRICA. . .. 2455

TABLE |. Numerical constants for the Padpproximant for the
chemical potentiak, .

ay 2.389
a, 1.167

a, 3.7347

as 0.55513

a, 3.1806

bo 0.06218

b, 0.1140

do 3.46341

dy 4.34164

d, 3

C1 2.0

Co 15

Cs 6.8 FIG. 1. Critical region; bound states density) .

If in (46) the nonideality part vanishes apdf reduces the

ture limit of the Montroll-Ward term. In the zero temperature classical logarithmic expression, the above equation turns

|r|r1n(]e|;rt1?r$ }gg;perature scaling as {88), obviously, becomes into the well-known Saha equation.
9 ' By means of Eq(46) it is also possible to give an expres-
In summary we may state that the exchange and correla- for the d f ionizati hich is th 0 of
tion contributions to the thermodynamical functions of a>on or the degree of lonizationy, which is the ratio o
. - : unbound electron density to overall electron density:
symmetrical quantum plasma are largely giee., in low

orders of perturbation theonpy the well-studied OCP ex- *

pressions. Where the simple superposition symmetry is bro- a=———-. (47)
ken at least the formal dependencies on densities and tem- n*+ng

perature remain intact. Thus, by altering the respective

constants, the available fit formulas for the OCP may bdt is then straightforward to obtain

employed. We note that in the nondegenerate low density

regions the formulas given here are consistent with those Gy 1 5 a2 % M*) 48
given in Sec. II. @ "‘12\/% ST opgeXp ——|. (48)

B. Mass action law, stability, and critical point It may be of interest to observe that E@8) can also be

The mass action layMAL ) is, in the chemical picture, a written in terms of the degeneracy parameter:
consequence of the equilibrium requedF(ng,n*)=0.

With w* = uld(n*, 7)+ _,uSCCP' seqn* 7) from Eq. (43 it » 1 u*
reads for our symmetrical plasma simply a °= 1+m y (rs,7)opgexp ——|. (49
Ho=2u%. (44)

Figure 2 shows the degree of ionization in vicinity of the

The chemical potential of the bound states is obtained immecritical point.
diately from Eq.(25) as The stability condition

n0A8>
oppL/

,u0=7'|n( (45)

If a dimensionless density parameté?) is defined in anal-
ogy to (33) for the bound state density, the MAL can be
solved analytically:

0.06
, i 0.05
r(so)(rs,r)=3\/12\/2m1’20pslﬁgexr{—3—u*(rs'f)]- ' :
T

(46)

It has to be reiterated at this point that this analytical solution
is entirely due to the fact that there is no nonideality contri- 50.01
bution to uy. Figure 1 shows the solution of E16) in the

critical region, which will be discussed further below. FIG. 2. Critical region; inverse degree of ionization.
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where again the solutions in any nonstable domain have to
be disregarded. Conditiofb6), however, is in Fig. 2 much
harder to detect than the saddle point of the chemical poten-
tial in Fig. 3. The critical degree of ionization is found as
acp=0.445.

Finally, the degeneracy and interaction parameters at the
critical point are evaluated as
U
yc(rgrlt , Tcrit)z 1.27,

o (55)

[(rd™, 7o =581.

This establishes that the CP is located in a region where the
g0.01 Boltzmann statistics already have to be substantially degen-
eracy corrected and the Padpproximant(39) has already
FIG. 3. Critical region; chemical potentigh* = !9+ . in switched to the strongly coupled, low temperature regime.

|E,]. It can be concluded that the criticality of a vacuum
electron-positron plasma is due to an intricate interplay of

ap Coulomb interaction and Fermi statistics. The value of the

W$0 (50 critical degree of ionizatiom posteriorijustifies our theory

buildup, which—in terms of interaction—takes into account
can be, using the MAIL(44), rewritten aq10] only the free charges. For other symmetrical plasmas, such
electron-hole plasmas in semiconductors, where a dielectric
ap* <0 constante weakens the Coulomb interaction, separate studies

ars 5D have to be carried out.

where the equality refers to the critical poiGEP), the
uniqueness of which is secured by the demand that in any
vicinity of it a stable state may be found. In topological We exploited in this work the formal analogy between the
terms, the critical point is a saddle point of th¢ surface classical Debye-Htkel-Bjerrum theory for symmetrical
over the density-temperature plane. Figure 3 shows theharged spheres and the corresponding quantum problem of
chemical potentialu* in the vicinity of the critical point, point charges with equal masses. The quantum functions cor-

IV. DISCUSSION

which is found to be located at responding to the Debye-ldkel-Bjerrum expressions are
] , found. As we have shown, the main difference is the replace-
r'=7.562, 7°"=0.045486. (52)  ment of the hard-sphere diameter by a temperature-

. dependent distance proportional to the de Broglie wave-
Due to the flatness of the* surface, it had been necessary length:

to iterate up to five digits in®™ in order to have stable four
crit

digits inrg" Going back to dimensional entities, one has a%aq(T):A/(4\/§). (56)

ng=3.73x 10" cm 3, T,=7186 K, (53 In all other respects the classical and the quantum functions
S - _have rather similar structure and properties. In order to take
which is in close correspondence to the critical data estiz 0 account symmetry effects we exploited the scaling prop-
mated In Sgc. ”.‘ o erties of the Hartree-Fock and Motroll-Ward approximations.
Bearing in mind that the dfgree Sf lonization hgs abovey, this basis the thermodynamical functions of symmetrical
bge_:n given in the formy=a(n ,np(n )), the condition of plasmas may be reduced to those of electron plasmas for
criticality can also be expressed in termsaof which reliable Padeapproximants are available. We have
further shown that the critical point is located in the moder-

Jda ) .
ace1— acp) =n* | (54)  ately degenerate region, the effect of the Fermion character
cp on the phase transition is studied.
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